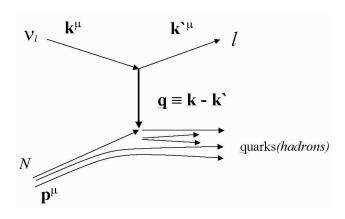
Theoretical ν_{τ} Charged-Current Interaction Cross Section


Emily Maher

26 April 2005

Introduction

- ullet First must establish deep inelastic scattering region if W>2 and Q>2, then interaction occurs in DIS region
 - Calculate W and Q
 - requires neutrino energy estimate
 - requires tau energy estimate
- Once established, must calculate theoretical cross section
 - Normally neglect mass of lepton
 - Cannot do this with tau

Calculating W and Q

$$W = (P+q)^2 = P^2 + q^2 - 2P \cdot q =$$
 (1)

$$M_N^2 + q^2 - 2M_N(E_{\nu_\tau} - E_\tau) \tag{2}$$

where P is the four-momentum of the nucleon, M_N is the mass of the nucleon, E is the energy of the neutrino, E' is the energy of the tau, and q^2 is:

$$q^2 = -Q^2 = (k - k')^2 = m_{\tau}^2 - E_{\nu_{\tau}}(E_{\tau} - p_{\tau} \cos \theta)$$

where k is the four-momentum of the neutrino and k' is the four-momentum of the tau.

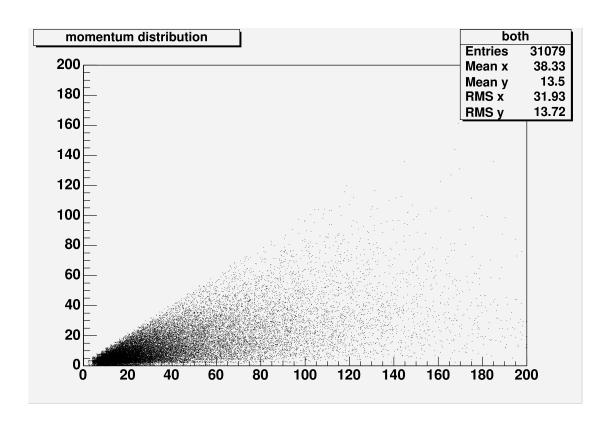
Estimating the Tau Neutrino Energy

Using momentum conservation:

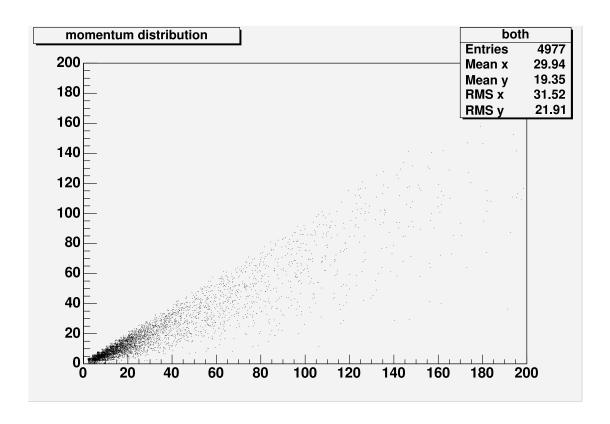
$$p_{\nu} = p_{\tau} \cos \theta + p_W \cos \beta \tag{3}$$

where β is the angle between the W boson and the neutrino direction and θ is the standard angle between tau and neutrino. β is calculated using the vector sum of all track except the lepton. We also have:

$$0 = p_{\tau} \sin \theta - p_W \sin \beta \tag{4}$$


Combining these:

$$p_{\nu} = p_{\tau} \cos \theta + \frac{p_{\tau} \sin \theta}{\sin \beta} \cos \beta = p_{\tau} \left(\cos \theta + \frac{\sin \theta}{\tan \beta} \right) = E_{\nu}$$
(5)


Estimating the Tau Energy

A minimum for the tau energy is the energy of the tau daughter(s). I plotted the energy of the tau vs. the energy of the tau's daughter(s) for the kink and trident cases.

This is the distribution of momentum of the daughter (y-axis) vs. momentum of the tau (x-axis) for the kink event:

This is the distribution of momentum of the daughter (y-axis) vs. momentum of the tau (x-axis) for the trident event:

Trident Events

Event	p1	p2	р3
3334_19920	7.8 ^{+3.6} _{-2.0}	18.9 ^{+20.7} _{-6.8}	3.3 ^{+1.2} _{-0.7}
3296_18816	$2.3^{+1.3}_{-0.6}$	$0.9_{-0.3}^{+1.0}$	$1.3^{+2.1}_{-0.5}$
Event	θ (mrad)	lpha (mrad)	ptot
Event 3334_19920	θ (mrad) 40	lpha (mrad)	ptot 30.0 ^{+21.0} _{-7.1}
			·

Trident Results

$/^{2})$
5.7 9
2.6).8
_
֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜

These values for ${\cal W}$ and ${\cal Q}$ are in the deep inelastic scattering region.

Kink Events

Event	θ (mrad)	α (mrad)	p_d (GeV)
3024_30175	28	276	$4.6^{+1.6}_{-0.9}$
3039_01910	67	30	$2.9_{-0.8}^{+1.5}$
3333_17665	16	208	$21.4^{+14.4}_{-6.4}$

Kink Results

Event	E_{ν} (GeV)	$E_{ au}$	q^2 (GeV ²)
3024_30175	$5.1^{+1.8}_{-1.0}$	$4.9^{+1.5}_{-1.0}$	$-3.2^{+1.5}_{-0.9}$
3039_01910	$9.4^{+4.9}_{-2.6}$	$3.4^{+1.8}_{-0.9}$	$-1.5^{+0.7}_{-0.4}$
3333_17765	$23.1_{-6.9}^{+15.5}$	$21.5^{+14.5}_{-6.5}$	$-3.1^{+2.1}_{-0.9}$
Event	W^2 (GeV ²)	Q	W
Event 3024_30175	$W^2 ext{ (GeV}^2)$ $3.8^{+2.5}_{-1.5}$	Q 1.8 ^{+0.5} _{-0.3}	2.0 ^{+0.6} _{-0.4}
		,	

I think this approximation will be fine, especially because I used the minimum tau energy in this calculation.

Calculating the Cross Section

Currently I have an expression which involves integrals over the parton distribution functions, q(x) and $\overline{q}(x)$. I am trying to estimate these. I have included the expression below. I will say more about how I arrived at this expression when I have a number.

$$\sigma^{\nu N} = \frac{2G^2ME}{\pi} \left\{ \left(1 - \frac{m_{\tau}^2}{4E^2} \right) \int_0^1 xq(x) dx - \frac{M}{4E} \int_0^1 x^2 q(x) dx + \frac{m_{\tau}^2}{2ME} \int_0^1 q(x) dx + \left(\frac{1}{3} - \frac{m_{\tau}^2}{4E^2} \right) \int_0^1 x\bar{q}(x) dx - \frac{M}{4E} \int_0^1 x^2 \bar{q}(x) dx + \frac{m_{\tau}^2}{4ME} \int_0^1 q(x) dx \right\}$$

$$\left\{ + \frac{m_{\tau}^2}{4ME} \int_0^1 q(x) dx \right\}$$
(6)